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SUMMARY 
The application of the finite element method to multiphase flow problems with interphase mass and heat 
transfer is described. A general formulation is used that determines the position of the interfacial boundary 
and allows for multiple solvents, differential volatilities and concentration- and temperature-dependent 
thermophysical properties. Species phase change and the dramatic volume change that accompanies 
interphase mass transfer make implementation of the theory challenging, since these events lead to 
discontinuous velocities and concentrations at phase boundaries. These discontinuities are especially large 
in processes involving rapid evaporation or condensation. As examples we examine the effects of rapid 
drying on film and fibre formation of sol-gel materials, which are often laden with volatile species. 
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1. INTRODUCTION 

Fluid mechanics problems that are coupled with evaporation and condensation phenomena in 
processes such as boiling, distillation and drying have yet to be modelled in detail with any 
numerical method. Numerical analyses offree surface flows have usually been made with little 
or no consideration of interphase mass and heat transport. Exceptions include several analyses 
that employ mass and heat transfer coefficients as expedients to a complete multiphase flow 
theory.'*2 In most cases these coefficients are empirical or are derived from overly simplified 
theories in one or more phases. 

When a transfer coefficient model is applied to one phase, the transport mechanisms in that 
phase are lumped into three variable coefficients, one for each transfer field, i.e. heat, mass and 
momentum. Thus the governing equations need only be solved in the remaining phases, thereby 
greatly reducing the size and complexity of the problem. Transfer coefficients can be obtained 
experimentally but are more often obtained from simplified theories such as boundary layer 
 model^.^ These coefficients in many cases adequately represent the transport phenomena of 
interest and have been used successfully in the analysis of interphase t r an~por t . "~  However, 
when mass and heat transfer rates across interfaces are rapid enough to alter the flow field 
significantly, classical heat and mass transfer theories are often inaccurate unless they can be 
corrected for the effect of transfer rate.3 Moreover, any change in the flow, mass or heat transfer 
field in that phase must be figured into these coefficients, which can sometimes be handled by 
modification of the simplified theory but more often makes those theories analytically intractable. 
If adequate transfer coefficients are inaccessible, the only alternative is to solve the governing 
equations in both phases. 
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The shortcomings of mass and heat transfer theory are nowhere more evident than in solvent 
removal from films and fibres.’.’~~ Coating films and spinning fibres of advanced sol-gel 
(ceramic) materials, for example, require precise drying control and hence complete knowledge 
of the details of the heat, mass and momentum transport fields in both phases. We happen to 
use these examples as case studies in this paper, but analysis of any process that involves 
interphase mass transport can potentially benefit from the approach we take here. 

Unfortunately, multicomponent solvent mixtures and multiple phases complicate conventional 
numerical techniques for analysing multiphase flows. A critical complexity is the volume change 
which accompanies phase change, which is normally 1000-fold for liquid-to-gas transitions. Thus, 
if we consider the interface to be a surface in space incapable of holding any significant mass 
inventory, the velocity will be dual-valued in order to accommodate mass conservation. 
Moreover, the concentrations of each species present in both phases are in general discontinuous 
at the interface because of the principles of vapour-liquid equilibrium.’ In essence, the interface 
represents a shock in velocity and concentration and hence requires special treatment. Interest- 
ingly, the same is not true of the temperature field, which is most realistically taken to be 
continuous at the interface although subject to Stefan-life flux conditions. 

The paper is organized as follows. Section 2 focuses on the complete theory necessary to 
describe the evaporation and condensation processes in multiphase viscous free surface flows; 
film and fibre formation processes are used as examples in this development. Section 3 describes 
the implementation of the theory in a free surface code based on the Galerkin finite element 
method, elliptic subdomaining and a standard free boundary technique for determining the 
location of the free surface. Finally we consider two case studies in sol-gel processing to which 
we apply the complete two-phase flow theory (Section 4). In Section 5 the results are validated 
against measurements of concentration along films and fibres. We also compare modelling results 
from the full two-phase multicomponent theory with simplified modelling results using transfer 
coefficients in the gas phase. 

2. THEORY O F  FREE SURFACE FLOW WITH EVAPORATION AND 
CONDENSATION 

Vaporization or condensation phenomena complicate conventional analysis of free surface flows: 
the most simplified but realistic theory must include convective diffusion together with the 
Navier-Stokes system and all boundary conditions common to free surface flows. The purpose 
of this section is to augment existing theories, e.g. the work of Scriven and c o - ~ o r k e r s , * ~ ~  to 
account for interphase transfer of multicomponent solvents, differential evaporation an con- 
densation and surface tension gradients, thereby enabling the realistic analysis of drying in 
coating and fibre-spinning processes. Although most drying theories available today include the 
coupled momentum, energy and species transport in the liquid phase, they lump the same theory 
for the gas phase into mass transfer  coefficient^.^*^^^'^ This was our initial approach, but we 
found no available theory for mass transfer in the gas phase to be adequate (see Section 5).  We 
therefore proceeded to analyse the coupled physics in both phases, employing the proper 
interphase boundary conditions. Although we happen to focus on coating and fibre-spinning 
processes (Figure l), the development below pertains to any related flow. 

Two-phase multicomponent systems 

Here we allow for up to three components in both the liquid and gas, with each phase 
having a constant density. All other material properties are allowed to vary. Incompressible 
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INFLOW’ 

(a) 

Figure I : Computational domans of (a) dip coating and (b) fibre spinning (extrusion) 

flow in the gas and liquid phases is governed by the principles of conservation of momentum 
and mass, i.e. 

v . u = o .  (2) 

Here u is the mass-averaged velocity, p is the density, T = -I, + q[Vu + V U ) ~ ]  is the stress 
tensor for a generalized Newtonian liquid, where I is the unit tensor, q is the viscosity and p is 
the hydrodynamic pressure, and f is the body force per unit volume. For non-isothermal systems 
an energy equation is also needed: 

Here C, is the heat capacity and k is the thermal conductivity. In addition to the Navier-Stokes 
system and the energy equation, convective diffusion equations can be written for each 
component in each phase, assuming no reactions and constant density: 

ax, 
~ + u*VXi  = -V.j i  for i = 1, 2, 3. 
at 

(4) 

Here Xi is the bulk mass fraction of species i and ji is given by Fick’s law of diffusion, i.e. 
ji = -pDiVXi, where Di is the pseudobinary diffusivity of species i. The equation of overall mass 
conservation, i.e. the continuity equation (2), which is already part of the Navier-Stokes system, 
is used in place of one of the components of equation (4). 

The convective diffusion equations for species transport can alter bulk fluid motion in several 
ways. First, diffusion itself can induce mass-averaged motion and hence influence the balance of 
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momentum, although this effect is not present with the constant densities we assume here. 
Second, evaporation or condensation at a free surface introduces fluid motion in the bounding 
phases and can actually alter the surface shape owing to the momentum imparted by the volume 
change. Third, the liquid composition at the free surface can be altered by species transport, 
thereby leading to localized surface tension variations. This upsets the balance of forces at the 
free surface: local excursions of surface tension away from its equilibrium value affect the normal 
balance of forces, while variations in surface tension along the surface affect the tangential 
balance of forces. These effects are accounted for in the boundary conditions applied at the free 
surfaces. 

Boundary and interphase conditions for tnulticomponent multiphase flow 

In this work all fluids are assumed to adhere and be impermeable to all solid boundaries so 
that the so-called no-slip and impenetrable boundary conditions apply. At all inflow and outflow 
boundaries either a condition prescribing velocities (fully developed velocity profile known a 
priori), a condition of vanishing normal traction in combination with one prescribed velocity 
component (fully developed) or a condition of vanishing surface stress is applied. It is important 
to note that the incoming or outgoing volumetric flow rate may not be known aprior when a free 
boundary intersects an inflow or outflow boundary. In that case the prescribed velocity profile 
must be parameterized by an effective film thickness. This occurs in the dip-coating process we 
analyse in Section 4. 

When mass exchange is allowed across the free surface, the velocity there will be discontinuous 
if the material undergoes a density change. In two dimensions, at a given locale on the free 
surface there will be four velocity components from a double-valued velocity vector. The 
corresponding conditions needed to determine these components are 

n -TI, = n * TI, + 2Han + n - pl(uI - u,)(uI - up) + Vsor ( 5 )  

where n represents the unit normal vector to the surface, t represents the unit tangent vector to 
the same; r~ is the surface tension and 2H is the mean curvature of the surface. The vector 
condition (5) is applied as a boundary condition on the Navier-Stokes equations in the liquid 
phase, while the scalar conditions (6) and (7) are applied as boundary conditions on the 
Navier-Stokes equations in the gas phase. The superscripts ‘1’ and ‘g’ denote liquid phase and 
gas phase respectively. 

Equation (5) is a vector condition that balances the normal and tangential components of the 
viscous forces and the hydrodynamic pressure in both adjacent phases with the capillary pressure, 
the vapour recoil by volume expansion and the surface tension gradients at the interface. 
Equation (6) enforces the continuity of tangential velocity at the interface. Equation (7) expresses 
the gas phase velocity component normal to the interface as a function of the gradients in 
concentration in the gas phase next to the surface. It is derived on the premise that the Nth 
component in the gas is effectively insoluble in the liquid. In this work the insoluble component 
is taken to be air. All other volatile components are allowed to enter the gas phase by evaporation 
or to re-enter the liquid phase by condensation. Equation (7) can be replaced by a similar 
condition written for the liquid phase. 
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Boundary conditions on the energy equation (3) are 

n. VT= 0 at solid surfaces, 

T' = Tg at free surfaces, 

k'n - VT' = kgn VTg + n - p'(u' - u,)X,AHYP at free surfaces, (10) 
i =  1 

where AHYp is the latent heat of vaporization per unit mass of volatile component i. The first 
condition (equation (8)) states that no flux is allowed at solid surfaces. Equation (9) enforces 
continuous temperature at interface boundaries; this condition is auxiliary to equation (lo), 
which is a Stefan condition that balances the jump in heat flux with the latent heat release or 
adsorption for vaporizing or condensing mass at the same boundaries. Prescribed temperatures 
are used at all inflow boundaries as conditions on the energy equation (3). Also, we are careful 
to place all outflow planes far enough downstream that we can apply conditions such as 
equation (8). 

Boundary conditions on the convective diffusion equations (4) are 

n - VX, = 0 for i = 1,2,3 at solid surfaces, (1 1) 

n - [(us - u')x;p' - jf] = n -  [(us - ug)Xfpg - j:] for i = 1, 2, 3 at free surfaces, (12) 

where ji is the diffusive contribution to the total flux ni = pXiu  + j, of species i and us is the 
velocity of the free surface. Equation (11) implies that solid surfaces are impermeable to all 
species. Equation (12) allows free surfaces to exchange species: the diffusive and convective flux 
of component i normal to the surface in the liquid must be balanced by the diffusive and 
convective flux of component i normal to the surface in the gas. Here we assume that the surface 
is incapable of holding a significant inventory of any species in excess of the bulk under 
equilibrium conditions, i.e. no species here is taken to be surface-active.12 The species in 
the liquid that are taken as non-volatile and the species in the gas that are taken as insoluble 
in the liquid are accounted for by no-penetration conditions at the free surface of the form n, = 
pXiu + ji = 0. 

Analogously to the bulk equations above, we replace one of the species kinematic conditions 
(equation (12)) with a condition formed by summing the component equations of equation (12). 
The result is a condition that enforces the overall mass flux across the surface to be continuous, 
i.e. the so-called kinematic boundary condition 

n - (u' - u,)p' = n * (ug - us)pg. (13) 

The remaining boundary conditions needed on equation (4) must provide a datum which sets 
a concentration level for each species. That datum can be set at an inflow boundary, as it usually 
is in the liquid phase: 

Xi = Xo at inflow surfaces. (14) 

Equation (14) might apply in the gas phase if gas of a known saturation is blown into the system. 
Otherwise the datum is set at the interface with the conditions on vapour-liquid equilibrium. 
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The solvent in the gas phase at the free surface is taken to be in equilibrium with the solvent 
in the liquid at the free surface. In this work we approximate this equilibrium behaviour by 
Raoult’s law 

where p y  is the saturation vapour pressure of solvent component i at a specific temperature, Ii 
is the mole fraction of the same in the liquid at the free surface and pi is the partial pressure of 
component i in the gas phase at the free surface. Raoult’s law usually holds for the component 
present in excess or when the system can be taken as thermodynamically ideal. For many systems, 
however, Raoult’s law is satisfactory over a wide range of concentrations.’ We plan on taking 
this simplified approach until there is reason to believe that a more sophisticated model is 
necessary to predict the experimental data. 

The vapour pressures of the volatile species are temperature-sensitive. If we assume that the 
solution is ideal, i.e., that each component behaves as if it were pure, then we can represent this 
temperature sensitivity by the Clausius-Clapeyron equation’ 

where ARap is the molar heat of vaporization of component i, pg is the molar volume of the 
gas and P’ is the molar volume of the liquid. Equation (16) can be integrated if we assume that 
the molar volume of the liquid is negligible compared with that of the gas and that the gas 
behaves ideally.’ This yields 

A R a P  
log p y  = - __ + B, RT 

where R is the gas constant and B can be determined from experimental vapour pressure data. 
Equation (17) is best used over small temperature ranges near the range for which the data used 
to determine B are valid.’ 

To make equation (15) computationally convenient, we express pi in terms of the mole fraction 
li in the gas phase by Dalton’s law pi /p t0 ,  = 2;. The remaining challenge is to convert mass 
fractions into mole fractions so that equations (4) and (5) can be used together with equation 
(15). This can be accomplished by solving all but one of the following definition equations for 
the mole fraction of component i, 

Zi M i  
Z,M, + Z , M ,  + 1 , M 3  

x. = for i = 1, 2, 3, ’ 

together with the constraint that 2 ,  + 1, + g3 = 1. An alternative to solving equation (18) is to 
use a volume-fraction-based formulation, a situation for which Amagat’s law states that volume 
fractions equal mole fractions in ideal gases. 
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3. COMPUTATIONAL STRAGEGIES FOR SIMULTANEOUS MOMENTUM AND 
SPECIES TRANSPORT 

Solution procedure 

We use a procedure based on the earlier works of Christodoulou and Scriven' to solve the 
system of equations outlined in Section 2. The techniques are based on the method of 
subdomaining with convenient finite element basis functions (biquadratic basis functions for 
velocity, concentration and temperature, bilinear basis functions for pressure on subparametric 
quadrilateral elements), Galerkin's method of weighted residuals and Gaussian quadrature. The 
subdomain structure or mesh is designed with an elliptic generation scheme.' In this scheme 
the kinematic boundary condition (13) is used to replace one of the elliptic partial differential 
equations governing the movement of the mesh at nodes along the surface. Consequently, meshes 
are produced that automatically conform to changes in boundary shape when physical para- 
meters are varied. Sample meshes are shown in Figure 2. 

FREE SI 

FREE 
SURFACE 

Figure 2. Sample meshes for two-phase flow: (a) dip-coating coarse mesh; (b) dip-coating fine mesh; (c) fibre extrusion 
fine mesh; (d) fibre extrusion coarse mesh 
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In order to cope efficiently with the thin boundary layers in concentration that develop next 
to the free surface, we employ a two-level discretization scheme.14 A two-level scheme is helpful 
since boundary layers of momentum and concentration are disparate, with the concentration 
boundary layers being much thinner in the liquid because solute diffusivities are much smaller 
than the kinematic viscosity. The problem is not as severe in the gas phase: although momentum 
boundary layers are in general thinner than in the liquid, diffusivities are roughtly the same 
magnitude as the kinematic viscosity. Resolving the narrow boundary layers of one field with 
a single mesh squanders computational work on unwarranted resolution of broad boundary 
layers of another field, i.e. a discretization fine enough for the concentration field is unnecessarily 
expensive to resolve the other fields of interest. 

In the two-level scheme a fine mesh is designed to cover the concentration boundary layer 
and to fit into the coarser mesh that suffices for the rest of the flow. The fit facilities interpolation 
of velocities from the coarse on to the fine mesh of finite elements and projections of the 
concentration from the latter on to the former. The new scheme handles this in such a way that 
the entire set of non-linear algebraic equations to which the discretization leads can be solved 
by Newton’s method. 

Figure 2 shows a sample of the two levels of discretization used in analysing dip-coating and 
fibre-spinning processes. The fine level in both cases was formed by algebraically ‘subdividing’ 
four times the rows of elements adjacent to the free surface on either side of the interface, with 
a geometric progression in element thickness perpendicular to the free surface. The meshes shown 
in Figures 2(a) and 2(b) contain 1883 biquadratic elements in the coarse grid and 2435 biquadratic 
elements in the fine grid and give rise to a total of 46,394 unknown coefficients for ternary 
systems in both phases. The meshes shown in Figures 2(c) and 2(d) contain 637 biquadratic 
elements in the coarse grid and 856 biquadratic elements in the fine grid and give rise to a total 
of 18,127 unknown coefficients. 

The discontinuities in velocity and concentration at the free surface due to the volume change 
on evaporation and vapour-liquid equilibrium were handled with two nodes assigned to the 
same physical location on the surface. One node was assigned to the liquid phase element and 
one to the gas phase element. For formation of the weighted residual equations at these nodes 
is described next. 

Weighted residual formation 

The formation of the weighted residual equations is often underrated in its complexity. This 
is especially true when applying the collection of conditions at the free surface which enforce 
mass, species and momentum conservation. Without mass exchange at the phase boundaries, 
those boundaries become material lines (two-dimensional) or surfaces (three-dimensional) at 
which the velocity is continuous. The difficulties begin with unknown concentrations, which in 
general are discontinuous at phase boundaries by virtue of the phase equilibrium conditions 
which partition the species between phases. There clearly is a special need for increasing the 
number of degrees of freedom at nodes lying on the phase boundaries, because the phase 
equilibrium conditions are often too complex to substitute directly into the equations. In this 
work we allow several species to exist in both gas and liquid phases, but at any locale on the 
interface there are two concentrations of each species related in magnitude by vapour-liquid 
equilibrium. Hence two concentration degrees of freedom at the interface must be tracked for 
each species unless the species exist in only one phase, i.e. the species is either non-volatile 
(liquid phase) or insoluble (gas phase). Hence at each computational location (node) we must 
account for 
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2 x (number of volatile/soluble species) + (non-volatile/insoluble species in each phase) 

unknown concentration degrees of freedom. This means that we must increase the number of 
degrees of freedom correspondingly at nodes on the free surface or equivalently increase the 
number of nodes at  the same physical location. 

To compound the problem, a discontinuity in density occurs at the gas-liquid interface that 
causes the velocities at the interface to be dual-valued. In order to capture the correct magnitude 
of the concentration and velocity discontinuities, care must be taken when formulating the 
residual equations. In the Galerkin finite element method these equations are derived by (i) 
representing the dependent variables (velocity, pressure, concentrations and temperature) in 
terms of finite element basis functions, (ii) inserting those representations into the governing 
equations and (iii) requiring that the weighted residuals of those equations with respect to the 
same basis functions vanish." The weighted residuals of the momentum equation (1) and the 
convective diffusion equations (4) are 

RM = [A [ p ( g  + u - Vu) - f]$' dA + lA T - V& dA - $'(n * T) ds = 0, (19) I* 
Where A is the computational domain, 8.4 is its boundary and $' is the basis function 
at node i. Typically these functions are chosen as low-order polynomials which adhere 
to a set of standard compatibility constraints.16 Note that the divergence theorem has 
been applied to the V - T  term in equation (19) (from equation (1)) and the V -ji term in equation 
(20) (from equation (4)). Although not shown, the energy equation (3) is treated in a similar 
fashion. 

In this study we are concerned with the application of these equations at  the free boundaries, 
since it is there that the velocity and concentrations are discontinuous. When applied at the free 
surface as an equation for a concentration or velocity unknown, the integrals in equations (19) 
and (20) will receive contributions from elements on either side of the interface. Splitting the 
integrals between the liquid and gas, we have: 

+ lAE [ pg (t - + u . V U  ) - f  ] $ ' d A +  T8 * V$' dA - $'(n - T8) ds = 0, (21) 

where as before the superscripts '1' and 'g' refer to liquid phase and gas phase quantities 
respectively. Because aA' = aAg and n' = -ng ,  equation ( 5 )  can be combined with equation (21) 
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and equation (12) can be combined with equation (22) to give 

+ jaA 4'[2Hon + n * pl(u' - u,)(uI - us) + V,o] ds = 0, 

4i[n * (us - u')X:p' - n * (us - ug)Xfpg] ds = 0. (24) 

Thus at each node along the free surface equation (23), a vector equation, is used to account 
for either the gas phase velocity components or the liquid phase velocity components, the other 
two components being accounted for by the weak form of equations (6) and (7). The same 
procedure is used for each volatile species: equation (24) is used to account for either the liquid 
or gas concentration and the vapour-liquid equilibrium condition (15) is used to account for 
the other. Clearly the bookkeeping is more complex than in the case where the velocities and 
concentrations are continuous at the interface, but conveniently we see no need to evaluate n - ji 
and n - T terms at the interface, which would bring with it some inaccuracy because of the Co 
elements we use, for which only the primitive variables are continuous at element boundaries. 

4. APPLICATION TO FORMATION OF SOL-GEL THIN FILMS AND FIBRES 

Formation of sol-yeljilms by dip coating 

Sol-gel films have enjoyed recent attention because they are suitable for a wide range of 
app1i~ations.l~ This versatility stems from the wide range of porosity that can be tailored into 
thin films simply by varying the processing conditions. By 'sol' we mean a colloidal dispersion 
of particles in a liquid; by 'gel' we mean a giant aggregate or molecule that extends throughout 
the sol. Typically the particles are inorganic or metal organic precursors which participate in a 
polymerization (gelation) process. Processing a sol usually includes this gelation stage; dip- 
coating processes are no exception. Today sol-gel thin film coatings are being studied intensively 
for such diverse applications as protective and optical coatings, passivation and planarization 
layers, inorganic membranes, semiconducting antistatic coatings and non-linear optical films, 
superconducting films, strengthening layers and ferroelectrics. In most of these applications the 
sol is put down on the substrate by dip coating or a related technique. 

Dip coating sol-gel materials involves more than a competition between viscous, capillary 
and gravitational forces;'* the mechanism which controls the final film thickness and micro- 
structure is considerably more complex, as shown in Figure 3. Film thinning by gravita- 
tional draining is assisted by vigorous evaporation, which also acts to decrease the amount of 
liquid that can be withdrawn. To make matters even more complicated, sols are typically 
formulated with several solvents, each of which usually differs in volatility and surface tension. 
Sometimes the relative volatilities are different enough to lead to differential solvent evaporation 
and ultimately to concentration variations along the film. Differential evaporation triggers 
several other events at and beneath the liquid-gas interface. First, it may lead to concentration 
variations along the gas-liquid interface; these variations cause surface tension gradients which 
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ALCOHOUWATER 
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RV DRAINAGE I 

Figure 3. Schematic diagram of steady state dip-coating process showing sequential stages of structural development 
that result from draining accompanied by solvent evaporation and continued condensation reactions 

contribute to the surface stress and alter the flow. Second, differential evaporation leads to the 
diffusion of volatile species towards the surface and non-volatile species away from the surface. 

In our analysis of sol-gel dip coating we concentrate on the effects of differential evaporation 
and surface tension gradients on the details of film formation. The many thermophysical 
properties and coater design specifications in Table I define a case of a dip-coating process. A 
solution of ethanol in water with a dispersed, non-volatile phase was chosen as a model system 
because it is typical of a silica-based sol. The system is taken as isothermal and the density. 
viscosity and diffusivity of the liquid and gas are taken to be independent of the concentrations 
of all species. These restrictions are not imposed in our analysis of fibre formation below. 

We will focus here on the effects of surface tension gradients during film formation. Those 
gradients are caused by differential evaporation from the film into the gas. The surface tension 

Table I : Operating conditions and thermophysical properties for dip-coating, base 
case 

Operating conditions 

Liquid composition (volume %) 
Substrate speed 
Substrate withdrawal angle 
Reservoir width 
Reservoir depth 

Thermophysical properties 

Liquid viscosity 
Gas viscosity 
Liquid density 
Gas density 
Surface tension (equilibrium 20 "C) 
Liquid diffusivity 
Gas diffusivity 

74: 16: 10 ethanol/water/non-volatile species 
1.0 cm s- '  
Vertical 
7 mm 
3 mm 

2 x P a s  
1.8 x P a s  
1000 kg m - 3  
1 kg m - 3  
30 mN m-'  
1 x 1 0 - 8 m 2 s - '  
1.6 x m2 s- '  
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Q is taken here to be a function of concentration alone. What is needed is a constitutive equation 
that relates the surface tension to the concentration of all components in the liquid next to the 
surface or at least those components that affect the surface tension. The best constitutive equation 
arises from fitting a function to the actual data. The surface tensions at various ethanol 
concentrations are shown in Figure 4. We fitted a hyperbolic cosine functions to the data in the 
range 0-0.2 mass fraction ethanol and a linear function in the range 0.2-1. The fit served as the 
constitutive equation for surface tension. 

The boundary conditions we impose on the gas flow in the base case force dry air into the 
domain over a portion of the artificial boundary that overlies the reservoir (see Figure 5). The 
velocity of the gas over this portion was taken to be 0.1 cm s - l ,  which is of the order of the 
substrate speed, i.e. 0.2 cm s -I ,  but far less than the evaporation-induced velocity in the gas 
phase (of the order of 10 cm s -  '). Over the same portion of the boundary we specified the 
incoming gas composition to be void of water and ethanol vapour. The remaining external 
boundary in the gas phase is presumed to be free of viscous traction and of diffusive flux of 
each species, except for the solid boundary that contains the coating liquid on the left-hand part 
of the domain, which is taken to extend into the gas as well. These conditions are arbitrary, but 
they provide a means of matching the experimental conditions. Unfortunately, the experiments 
we have available for comparison were performed with no knowledge of the details of the gas 
flow. 

Figure 5 shows the pattern of streamlines and the velocity vectors corresponding to the base 
case operating conditions. Between any two adjacent streamlines in Figure 5(b) the volumetric 
flow rate is the same, but the mass flow rate changes if the streamlines cross the free surface. 
Both the pattern of streamlines and the velocity vectors show a clockwise vortex driven in the 
gas by the counterclockwise recirculation in the liquid phase reservoir. This is a direct 
consequence of the no-slip boundary condition (6) at the interface. Over this portion of the free 
surface the evaporation rate is relatively low, mainly owing to a higher concentration of ethanol 
and water vapour in the overlying gas. Far above the reservoir surface the streamlines indicate 
a strong vapour current emanating from the thin liquid film. This heightened evaporation is 
also evident in plots of velocity vectors: the component of velocity normal to the surface, 
governed by equation (7), increases with distance downstream. Also noteworthy is the viscous 
boundary layer in the gas phase building downstream of an apparent stagnation point on the 
free surface (right side, bottom of Figure 5). It is this boundary layer on which we based the 
model of mass transfer in Section 5. These calculations indicate that the mass transfer model 

z 
v) z 
W 
k 
W 
0 

0 

t a 
3 
v) 

MASS FRACTION ETHANOL 
Figure 4. Surface tension versus mass fraction of ethanol in water-ethanol solutions at various temperatures 



Plate I .  Concentration contours for two-phase flow: (a) mass fraction of 
ethanol; (b) mass fraction of ethanol in film region; (c)  mass fraction of water 
in film region. The difference between one and the sum of (b) and (c) is the 

mass fraction of non-volatile species at the same location 

Plate 2. Drying control with air knife. Concentrations are mass fraction of 
ethanol. Conditions are the same as in previous figures 



Plate 3.  Contours of temperuture (left) and mass fraction of EtOH (right) 
for fibre-spinning base case 

Plate 4. Velocity vectors, isotherms and mass fraction of EtOH for 
warm, moist inlet air. All other parameters are those of the base case 

in Table I1 
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Figure 5. (a) Velocity vectors (absolute) in gas and liquid phases. (b) Pattern of streamlines. (c) Pattern of streamlines in 
film region with horizontal axis expanded 100 times (multiplied by density) 

we employ may be inaccurate in part because of strong convection normal to the free 
surface. 

Vapour-liquid equilibrium conditions make for a concentration discontinuity at the free 
surface. This discontinuity defines the free surface, as shown in Plate 1. Unfortunately, owing 
to relatively high vapour pressures, the concentration levels of ethanol and water in the gas 
phase, and hence the gradients in concentration there, are too small to be resolved by the colour 
spectrum. For that reason we show an overlay of the concentration contours in the gas phase. 
Noteworthy is the gradient in concentration normal to the free surface, which grows larger with 
distance downstream (i.e. contour lines in the gas phase become more parallel to the film 
downstream), and an apparent layer of relatively high vapour concentration overlying the 
reservoir (mass fraction 0.095). Correspondingly, we see little enrichment of water and non- 
volatile species near the reservoir. Well above the reservoir, however, the film becomes depleted 
in ethanol and the water concentration rises; but the water too is evaporating, and near the 
outflow plane (projected to be about 2mm from the drying line) it is overtaken by the 
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non-volatile species, which begins to concentrate precipitously. Plate 1 shows the mass fraction 
of non-volatile species rising from 0.4 to 0.7 in the last 1 cm of the film. 

When coating binary-solvent-based sols, the meniscus shape usually exhibits a perculiar 
plateau region followed by a region of rapid thinning and a second, lower plateau. This shape 
has been observed in earlier experiments,” where it was conjectured to be a consequence of 
differential volatilities and surface tensions of ethanol and water. This mechanism is corroborated 
by the theory and is shown in Plate 1. Below the second plateau (or ‘foot’) is a water-rich phase 
that outlasts the alcohol owing to a lower volatility. This apparent ‘phase separation’ appears 
regardless of the original composition of the liquid and over a wide range of drying conditions 
we tried. It even appears at the evaporation azeotrope composition at which the mixture 
evaporates at constant concentration. 

Surface tension gradients between the alcohol-rich and water-rich portions of the film enhance 
this plateau region. The velocity vectors in Figure 5 (centre inset) show a rapid acceleration of 
the surface, and hence of the underlying liquid, towards the downstream plateau, thereby 
lengthening the foot feature. 

Clearly the gas phase plays an important role in the film microstructure development. This 
makes it possible to control the microstructure via the drying environment. There are several 
means of doing so, the simplest being with humidity. With the more simplified mass transfer 
theory for the gas phase, humidity adjustments can be made to the overlying saturation of species 
i, as we demonstrate in Section 5. Unfortunately, changing the overlying saturation probably 
alters the flow field and should be accompanied by the appropriate adjustments to the mass 
transfer coefficient. With the two-phase flow approach, humidity control is a simple matter of 
placing conditions on the volatile species at the external boundaries of the domain. 

As an example we show in Plate 2 the effects of drying control with a narrow jet of dry air 
impinging on the liquid film just above the level of the reservoir. This approach, often termed 
air knife control, is usually employed to accelerate the drying of films after they are deposited 
and solidified. Air knives are also commonly employed to control the film thickness through 
an air-stripping process. Here it is employed to achieve both effects. 

The air is blown from a nozzle at 1 m s - l  and the coating conditions correspond to the base 
case outlined in Table I ;  however, the composition in this case is 40:40:20 water/ethanol/non- 
volatile species. Plate 2 (right side) shows the velocity field under and around the air knife. 
Noteworthy is the stagnation-like flow pattern under the jet where it impinges on the film. In 
this figure the velocity vectors in either phase are multiplied by density, so they indicate a mass 
flow rate, and the vectors on the free surface in the gas phase have been magnified over the 
others to show the heightened evaporation underneath the air knife. Plate 2 (left side and top) 
shows the concentration contours of ethanol in both the gas and the liquid. Here the stagnant 
layer of gas with high ethanol vapour content is visible beneath the air knife. Up on the substrate 
the concentration of ethanol in the gas is much less and correspondingly the evaporation rates 
are much higher. The highest evaporation rates are directly under the air jet at the film surface, 
as expected, Correspondingly the volatile components are drawn off the film more rapidly, with 
the film becoming virtually depleted of the more volatile ethanol underneath the air jet. Of 
course this affects the final film thickness, but not as much as the metering effect through 
impingement pressure. This is also evident in Plate 2 (top right), where there appears a depression 
in the film underneath the jet. 

Clearly the film concentration and thickness evolution can be controlled with the air knife. 
If the results we present here are not desirable to a coating practitioner, we are free to vary 
the concentration of the air blown through the jet. In fact it is possible to enrich the film 
in a condensable solvent component, as has been demonstrated in the Marangoni drying 
technique.20*2’ 
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Sol-gel fibre spinning 

Sol-gel fibres can be formed by drawing them directly from viscous sols at room temperature," 
as shown in Figure l(b). The two main applications for these fibres are composite reinforcement 
and refractory textiles. Even though these applications are most efficient when as many as 10-100 
fibres are drawn simultaneously, there is much to be learned from the spinning (drawing) and 
subsequent drying of a single fibre strand. As in sol-gel film formation, drying conditions (gas 
phase air conditioning) have enormous implications on the final fibre microstructure. 

The system we consider here consists of a single fibre strand extruded from a nozzle, with air 
being forced into the system around the periphery of the nozzle (Figure l(b)). Insofar as the 
fibre is extruded vertically, the situation is symmetric about the fibre centreline and so 
axisymmetric analysis is warranted. The thermophysical properties we consider correspond to 
a silica-based sol and are listed in Table 11. The liquid is taken to be Newtonian, although the 
viscosity can be a function of temperature. The viscosity here is assumed to vary exponentially 
with the inverse of temperature, 

where qo is the reference viscosity at the reference temperature To and E ,  is a parameter that 
can be fitted to experimental data. The vapour phase diffusion coefficients are assumed to be 
constant, but the solute-solvent diffusivity is usually taken as a function of concentration in the 
liquid phase. The latter is necessary to model a phenomenon known as case hardening, where 
a layer of dry, non-volatile material forms on the surface of a wet fibre or film, thereby impeding 
further drying of the material. An empirical concentration dependence is used, 

Table 11: Operating conditions and thermophysical properties for fibre-spinning base 
case 

Operating conditions 

Liquid composition (volume %) 
Inlet liquid temperature 
Mean extrusion speed 
Nozzle radius 
External air speed 
Inlet air composition 
Inlet air temperature 

Thermophysical properties 

Liquid viscosity 
Gas viscosity 
Liquid density 
Gas density 
Surface tension (equilibrium 20 "C) 
Liquid diffusivity 
Gas diffusivity 
Liquid thermal conductivity 
Gas thermal conductivity 
Liquid heat capacity 
Gas heat capacity 
Heat of vaporization 

10:60:30 EtOH: water: non-volatile species 
295 K 
1 cm s- '  
60 pm 
25 cm s- ' 
Dry 
293 K 

8 Pa s 
1.8 x Pas  
1000 kg m - 3  
1 kg m - 3  
5 0 m N m - '  
1 x 1 0 - * m 2 s - '  
1.6 x mz s - '  
0.14cal s - '  m - '  K - '  
5.8 x 
1000 cal kg - K - 
250 cal kg-' K - '  
5.9 x lo5 cal k g - I  

cal s - '  m - l  K - '  
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where X, is the mass fraction of solids in the solution, X,, is the reference mass fraction, Do is 
the diffusion coefficient at  the reference mass fraction and A is a parameter that can be fitted 
to experimental data. 

Plate 3 shows the pattern isotherms (left) and concentration (right) in both gas and liquid 
phases for the base case. The ethanol mass fraction drops within the fibre with distance down 
the spin line. Correspondingly the fibre cools owing to latent heat effects (by approximately 2 K 
from nozzle exit to bottom of computational domain, a distance of 2.4 mm). Plainly visible are 
the concentration and temperature boundary layers forming on the gas and liquid sides of the 
interface. On the gas side the boundary layers of temperature and ethanol vapour grow 
initially and then are tempered in their growth because of the externally forced flow of dry air. 
On the liquid side of the interface the concentration boundary layer initially spans the entire 
fibre cross-section. Although not shown, the concentration boundary layer for the less volatile 
component (water) steepens along the interface with distance down the spin line, mainly owing 
to the plummeting diffusivities as the concentration of non-volatile phase (solid fraction) increases 
(equation (26)). These nearly solid-like diffusion coefficients put stringent requirements on the 
grid resolution as the concentration boundary layers become exceedingly thin. Here the two-level 
grid resolution approach we use is a breakthrough. Figure 2 shows that our discretization for 
convective diffusion is highly refined along the free surface. 

To demonstrate the versatility of the two-phase approach, we changed the drying conditions 
around the fibre. The air temperature at the inflow was increased to 298 K and the air was 
taken as saturated in ethanol at atmospheric (ambient) temperature and pressure; Plate 4 shows 

, 
Y-GGGGGl 

Figure 6. Pattern of streamlines (left) and velocity vectors near nozzle exit (right) for same conditions as in Figure 9 
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the corresponding isotherms and concentration contours in this case. The thermodynamics 
conditions here are such that the ethanol initially condenses on the fibre, as indicated by the 
initial rise in ethanol content in the fibre. Instead of evaporative cooling, the fibre temperature 
increases initially. Once the ethanol content in the fibre exceeds that needed to reverse the 
equilibrium, the ethanol begins to evaporate (about half-way between the inflow and outflow). 
The velocity field, shown in Figure 6), also indicates that condensation is followed by evapora- 
tion, since the direction of the velocity relative to the interface reverses about half-way down 
the spin line. The pattern of streamlines shows that a vapour current does not emanate from 
the fibre initially, but begins to build far downstream. 

These results point out that gas phase conditioning is crucial to controlling the fibre-drying 
process. It is common practice in many industrial applications to manage the composition and 
temperature of the gas phase throughout a fibre-spinning tower via multiple intakes and exhaust 
ports. A similar analysis of localized fibre drying is a straightforward extension of the results 
presented here and would be akin to the air knife example we covered earlier (see Plate 2). In 
the next section we demonstrate how difficult it is to tune the less expensive mass and heat 
transfer coefficient approach, not only to perform the same type of drying control analysis but 
also to attain agreement between theory and experiment. 

5. COMPARISON WITH EXPERIMENT AND SINGLE-PHASE FLOW THEORY 

Comparison with experimental data 

The two-dimensional model of sol-gel dip coating described above was tested against the film 
thickness and concentration profiles measured by Brinker et al. 2' Recall that the coating liquid 
in the theory was composed of 74% by weigh ethanol, 16% by weight water and 10% by weight 
non-volatile species, the last having a molecular weight of 46 g mol- '. In the experiments the 
liquid was 82% ethanol and 18% water, so the ratio of ethanol to water was the same. The 
non-volatile component was included in the theory to prevent complete evaporation of the film, 
a phenomenon the current numerical scheme is incapable of handling. Experiments were 
performed at coating speeds of 0*2cms- ' ;  the computations ranged from 2 to 1 cms- ' .  
Solutions to the theory at lower coating speeds could not be attained owing to insufficient 
streamwise resolution in the computational mesh needed to resolve film thicknesses of less than 
1 pm. 

Figure 7 shows a comparison between film thickness profiles predicted by the theory and the 
profile measured by imaging ellipsometry. Clearly there is a large discrepancy in the magnitude 
of the film thickness at any point along the substrate. However, the solution family parameterized 
by the substrate speed shows that the correct magnitude is apparently being approached with 
a reduction in substrate speed, which is encouraging. Even more encouraging is that the shape 
features we predict are similar to the experimental data. It is also reasonable to expect 
quantitative agreement had we been able to match the conditions of the experiment. We do not 
expect, however, to be able to predict the exact location of the drying line by the theory unless 
we can match the drying environment in the experiments and account for the microscale physics 
which dominates when the film becomes thinner than 100 A. Unfortunately, at  the time of the 
experiments, little effort was made to characterize the gas flow. This clearly leaves room for 
future work. 

We also checked the predicted concentration profiles against those inferred from fluorescence 
spectroscopy measurements.' Even though the experiments were performed under different 
conditions, we observed similar concentration variations along the film, with much of the ethanol 
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THEORETICAL EXPERIMENTAL 
74:16:10 WATER/ ETOH/SlLlCATE 8218 WATER/ ETOH 

DISTANCE ALONG SUBSTRATE, ym 
Figure 7. Comparison of theory and experiment 

depletion taking place well above the reservoir surface. Unfortunately, at the time of this writing, 
we had no quantitative measurements available indicating the magnitude of these variations. 

Single-phase flow with mass transfer model 

The equations of overall mass, momentum and species transfer were also solved in the liquid 
phase only, with a mass transfer model accounting for the fluid mechanics and mass transport 
in the gas phase. In this approach the right-hand sides of equations (12) and (13) were replaced 
by expressions based on the effective flux of each species across the interface. These expressions 
were of the form ni = Ki(Xi - X o )  for each species i .  The constants K i  we estimated from the 
classical boundary layer theory of semi-infinite flow driven by a moving flat plate emanating 
from a slit.23 Figure 8 shows that the boundary layer in the gas phase that builds up downstream 
of the stagnation point in dip coating is of this type. In this boundary layer approach, functional 
forms for the velocity components and the concentration are substituted into the Navier-Stokes 
system and the convective diffusion equations in the gas phase. The resulting equation set is 
then solved for the rate of mass transfer in terms of the concentrations (partial pressure) of the 
transported species at the surface of the film. The average gas phase coefficient of mass transfer, 
K i ,  resulting from this approach is 

D. 
L 

K i  = (0.56S~:' 'Re:'~), 

where Re, is the effective Reynolds number in the gas phase based on the substrate speed and 
a development length L along the film and Sc, is the Schmidt number in the gas phase based 
on the binary diffusivity D,, taken in this case to be the same for all species. It is noteworthy 
here that K i  is independent of the local interfacial concentration and that only through the mass 
transfer model for the flux, i.e. n, = Ki(Xi - Xp) ,  can it depend on the local concentration Xp 
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Figure 8. Boundary similarity between moving flat plate and free surface movement in dip coating 

in the ‘far field’ of the gas phase. Furthermore, the local mass transfer coefficient decreases with 
increasing distance downstream, which leads to lower mass transfer rates. 

Figure 9 shows the pattern of streamlines and the corresponding concentration contours for 
a composition of 82:8: 10 ethanol/water/non-volatile species. The streamlines indicate the inflow 
along the substrate at the bottom of the reservoir. Near the free surface the streamlines also 
indicate vigorous evaporation, since several intersect the surface. The corresponding concentra- 
tion contour (top) show streamwise depletion of the more volatile species (ethanol) and a 
boundary layer of ethanol-lean (water-rich) solution along the free surface overlying the 
more-or-less static reservoir. This boundary layer turns parallel to the film direction when the 
film becomes so thin that the substrate presence influences the evaporation-induced concentra- 
tion gradients. Streamwise enrichment of the non-volatile species is also evident. The concentra- 
tion contours in this case are largely perpendicular to the interface where the film is thin. 

The results in Figure 9 show small variations in volatile species concentration along the free 
surface. In fact the ratio of water to ethanol remains large (water-rich) and unchanged near the 
surface, although the absolute mass fractions of these species change as the non-volatile species 
concentrates along the substrate. This is a result of the constant mass transfer coefficient used 
so far, which outweighs any mechanism in the liquid phase that might cause the concentration 
at the surface to vary. Unfortunately the simplified boundary layer theory we employ disallows 
any mechanism that might lead to a mass transfer coefficient that varies along the film. With 
this approach we found no way to reproduce the experimentally measured profiles of ethanol- 
water films. 

To investigate the effect of a varying coefficient, we presumed that the evaporation rate must 
increase with distance downstream, as necessitated by the geometrical effects near the drying 
line. Correspondingly we tried ramping, in various degrees, the mass transfer coefficient with 
distance along the surface from the pool to the outflow plane. The results of one case are shown 
in Figure 10 (left). In this case the mass transfer coefficient was ramped from a low value 
(one-tenth of that given by Equation (27)) to the value used in Figure 9 over the last 0 2  mm of 
the entrained film. Now not only is a substantial gradient of ethanol concentration apparent 
along the free surface, but the corresponding surface tension gradient directed upwards is strong 
enough to create a small pile-up of water-rich liquid near the outflow plane. On the right of 
Figure 10 we show the effect of adding a 30% overlying saturation of ethanol in the overlying 
gas, i.e. we set the partial pressure of ethanol to be 30% of its equilibrium vapour pressure. In 
this case we notice that evaporation of ethanol is impeded enough to undermine the streamwise 
depletion of ethanol. In fact the mass fraction of ethanol is still 0-4 at the outflow plane. 
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MASS FRACTlO 

MASS FRACTION ETHAN0 

Figure 9. Pattern of streamlines (top) and concentration contours (bottom) predicted with mass transfer model. The 
mass transfer coefficient (given by equation (27)) is constant along the free surface. Composition is 82:8: 10 ethanol/ 

water/non-volatile species 

Figure 10. Effect of ramping of mass transfer coefficient (left) and humidity change (right). All other conditions are the 
same as in Figure 13. The horizontal axis is expanded 30-fold 
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What this mass transfer analysis shows is that the concentration fields in the entrained film 
are extremely sensitive to the drying environment. Rather than search for gas phase mass 
transport theories that account for realistic variations in mass transfer coefficient, and especially 
theories that are analytically tractable, we opted for a more accurate two-phase approach 
(Section 4). 

6. CONCLUSIONS 

In this paper the complicating effects of evaporation and condensation in two industrially 
important processes were investigated with a realistic model based on conservation laws of 
overall mass, momentum, species and energy transport. The theory encompasses both gas and 
liquid phases, with proper interphase boundary conditions applied where appropriate. Multiple 
components and multiple phases together with the volume change accompanying evaporation 
or condensation make any numerical scheme for solving the governing equations more 
challenging. The problem is that velocity and concentration are discontinuous (multivalued) at 
the surface, the first being a result of a volume expansion that accompanies interphase transfer 
and the second stemming from vapour-liquid equilibrium. The numerical complexities are 
handled by a flexible finite element method that can deal with unknown free surface shape, 
interphase mass and momentum transfer and with velocity and concentration shocks. 

Dip coating and fibre spinning of sol-gel materials were chosen as model problems. Sol-gels 
must be represented by multicomponent multiphase models, since they are normally composed 
of a condensed phase component which may polymerize or aggregate and one or more solvent 
components which are volatile (e.g. alcohol and water). 

The solutions contain detailed information on the meniscus and the distribution of solute in 
both phases during deposition. We found that differential volatility leads to surface concentration 
gradients and hence to surface tension gradients that alter the flow and change the meniscus 
shape. For the first time the peculiar thinning profile found in dip coating, which has been 
observed experimentally in alcohol-water systems, is predicted theoretically. Moreover, the 
predictions agree qualitatively with profiles measured by imaging ellipsometry. Because of this 
agreement, we extended the calculation to different drying environments to demonstrate how 
drying strategies might be used to control the sol-gel microstructure in both film and fibre 
formation. This portion of the anlaysis was made feasible only be extending the theory to 
two-phase flow rather than relying on a mass transfer coefficient to account completely for the 
gas phase fluid mechanics and convective diffusion regimes. 
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